Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies
نویسندگان
چکیده
We use an optical cavity in the regime of intermediate coupling between atom and cavity mode to detect single moving atoms. Degenerate polarization modes allow excitation of the atoms in one mode and collection of spontaneous emission in the other while keeping separate the two sources of light; we obtain a higher confidence and efficiency of detection by adding cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence detection of photons, attaining fidelities in excess of 99% in less than 1 s. Detailed studies of the second-order intensity autocorrelation function of light from the signal mode reveal evidence of antibunched photon emissions and the dynamics of single-atom transits.
منابع مشابه
Numerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity
In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...
متن کاملAtom detection and photon production in a scalable, open, optical microcavity.
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity a...
متن کاملAtom-photon interactions in a system of coupled cavities
We give a theoretical treatment of single atom detection in an compound, optical micro cavity. The cavity consists of a single mode semiconductor waveguide with a gap to allow atoms to interact with the optical field in the cavity. Optical losses, both in the semiconductor and induced by the gap are considered and we give an estimate of the cavity finesse. We also compute the cooperativity para...
متن کاملDeterministic loading of individual atoms to a high-finesse optical cavity.
Individual laser-cooled atoms are delivered on demand from a single atom magneto-optic trap to a high-finesse optical cavity using an atom conveyor. Strong coupling of the atom with the cavity field allows simultaneous cooling and detection of individual atoms for time scales exceeding 15 s. The single atom scatter rate is studied as a function of probe-cavity detuning and probe Rabi frequency,...
متن کاملA Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom
The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...
متن کامل